Random walk approximation of fractional-order multiscaling anomalous diffusion.

نویسندگان

  • Yong Zhang
  • David A Benson
  • Mark M Meerschaert
  • Eric M LaBolle
  • Hans-Peter Scheffler
چکیده

Random walks are developed to approximate the solutions of multiscaling, fractional-order, anomalous diffusion equations. The essential elements of the diffusion are described by the matrix-order scaling indexes and the mixing measure, which describes the diffusion coefficient in every direction. Two forms of the governing equation (also called the multiscaling fractional diffusion equation), based on fractional flux and fractional divergence, are considered, where the diffusion coefficient and the drift vary in space. The particle-tracking algorithm is also extended to approximate anomalous diffusion with a streamline-dependent mixing measure, using a streamline-projection technique. In this and other general cases, the random walk method is the only known way to solve the nonhomogeneous equations. Five numerical examples demonstrate the flexibility, simplicity, and efficiency of the random walk method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation

The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). In this work, an explicit finite-difference scheme for TFDE is presented. Discrete models of a non-Markovian random walk are generate for simulating random variables whose spatial probability density evolves...

متن کامل

Operator Lévy motion and multiscaling anomalous diffusion.

The long-term limit motions of individual heavy-tailed (power-law) particle jumps that characterize anomalous diffusion may have different scaling rates in different directions. Operator stable motions [Y(t):t> or =0] are limits of d-dimensional random jumps that are scale-invariant according to c(H)Y(t)=Y(ct), where H is a dxd matrix. The eigenvalues of the matrix have real parts 1/alpha(j), w...

متن کامل

Fractional Diffusion Processes : Probability Distributions and Continuous Time Random

A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By the space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Fell...

متن کامل

Retarding Sub- and Accelerating Super-diffusion Governed by Distributed Order Fractional Diffusion Equations

We propose diffusion-like equations with time and space fractional derivatives of the distributed order for the kinetic description of anomalous diffusion and relaxation phenomena, whose diffusion exponent varies with time and which, correspondingly, can not be viewed as self-affine random processes possessing a unique Hurst exponent. We prove the positivity of the solutions of the proposed equ...

متن کامل

Random-order fractional differential equation models

This paper proposes a new concept of random-order fractional differential equation model, in which a noise term is included in the fractional order. We investigate both a random-order anomalous relaxation model and a random-order time fractional anomalous diffusion model to demonstrate the advantages and the distinguishing features of the proposed models. From numerical simulation results, it i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 74 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006